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Abstract. Climate models are the major tools to estimate climate variables evolutions in the future. However, climate simu-

lations often present statistical biases and have to be corrected against observations before being used in impact assessments.

Several bias correction (BC) methods have therefore been developed in the literature over the last two decades, in order to

adjust simulations according to historical records and obtain climate projections with appropriate statistical attributes. Most

of the existing and popular BC methods are univariate, i.e., correcting one physical variable and one location at a time, and5

thus can fail to reconstruct inter-variable, spatial or temporal dependencies of the observations. These remaining biases in

the correction can then affect the subsequent analyses. This has led to further research on multivariate aspects for statistical

postprocessing BC methods. Recently, some multivariate bias correction (MBC) methods have been proposed, with different

approaches to restore multidimensional dependencies. However, these methods are not well apprehended yet by researchers

and practitioners due to differences in their applicability and assumptions, therefore leading potentially to different results.10

This study is intended to intercompare four existing MBCs to provide end-users with aid in choosing such methods for their

applications. For evaluation and illustration purposes, these methods are applied to correct simulation outputs from one climate

model through a cross-validation methodology, which allows for the assessment of inter-variable, spatial and temporal criteria.

Then, a second methodology is performed for assessing the ability of the MBC methods to account for the multi-dimensional

evolutions of the climate model. Additionally, two reference datasets are used to assess the influence of their spatial resolution15

on (M)BC results. Most of the methods reasonably correct inter-variable and inter-site correlations. However, none of them

adjust correctly the temporal structure as they generate bias corrected data with usually weak temporal dependencies compared

to observations. Major differences are found concerning the applicability and stability of the methods in high-dimensional

contexts, and in their capability to reproduce the multi-dimensional changes of the model. Based on these conclusions, per-

spectives for MBC developments are suggested, such as methods to adjust not only multivariate correlations but also temporal20

structures and allowing to account for multi-dimensional evolutions of the model in the correction.
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1 Introduction

Representing precisely the climate system and the interactions between its components is a major challenge not only for climate

modellers but also for scientists working on impact, mitigation and adaptation issues relating to Climate Change. Indeed,it is25

now common that climate change impact studies, e.g., in hydrology, environmental science or economics, use Global and

Regional climate model (GCM and RCM) simulations as inputs into impact models. However, in spite of continued scientific

progress in climate modelling, climate simulations often remain biased compared to observations (Christensen et al., 2008).

This means that their statistical attributes such as mean, variance, extreme, or even dependence structures between several

variables and/or sites can differ from those calculated based on historical records. Therefore, using plain simulations can30

significantly affect the results of impact studies.

To solve this issue, many statistical bias correction (BC) methods have been developed, in order to correct the statistical

discrepancies of the simulations before climate change assessment studies. Most of the BC methods in use are designed to

adjust univariate distribution features of climate variables, such as the mean (e.g., Delta method, Xu, 1999), the variance

(e.g., simple scaling adjustment, Berg et al., 2012) or quantiles (e.g., “quantile-mapping”, Haddad and Rosenfeld, 1997). The35

latter technique received a notable success, since it permits to adjust the mean, the variance and any quantile of the climate

variables. Its theoretical framework has been conducive to the development of multiple versions of quantile-based methods

(e.g., Panofsky and Brier, 1958; Déqué, 2007; Gudmundsson et al., 2012; Vrac et al., 2012). However, all these univariate

BC methods are designed to correct variables independently, i.e. are applied separately for each physical variable at each

specific location (e.g., grid cell). Although univariate distribution features are adjusted according to references, it can generate40

inappropriate multivariate situations where the dependence structure between variables and sites is not corrected from the

model and misrepresented (Maraun, 2013). Ignoring the observed inter-variable and inter-site dependencies in the correction

procedure can result in obtaining corrected outputs with inappropriate physical laws, and thereby distorting the results of

impact studies. It is therefore of paramount importance to adjust the dependence structures of climate simulations, in addition

to 1d-characteristics, before using it in subsequent studies.45

These methodological issues have led up to the recent development of a few multivariate bias correction (MBC) methods.

As mentioned by Vrac (2018), and completed by Robin et al. (2019), they may be grouped into three main categories of

approaches: the “marginal/dependence” correction approach, the “successive conditional” correction approach, and the “all-in-

one” correction approach. The “marginal/dependence” category is made up of multivariate bias adjustment methods correcting

separately the marginal distributions and the dependence relationships of climate simulations (e.g., Bárdossy and Pegram,50

2012; Mehrotra and Sharma, 2016; Vrac, 2018; Nahar et al., 2018; Cannon, 2018). In the “all-in-one” category, multivariate

BC methods correct the 1d-marginal properties and dependence structures altogether at the same time (e.g., Robin et al.,

2019). At last, “successive conditional” MBC methods perform successive corrections, conditionally on the variables already

corrected (e.g., Bárdossy and Pegram, 2012; Dekens et al., 2017). In particular, this latter category has two major limitations.

First, the quality of the correction can change depending on the ordering of the variables to correct (see, e.g., Piani and Haerter,55

2012). Second, the number of variables already corrected increases at each iteration step, which progressively reduces the
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number of data available for the correction, making it less and less robust. Accordingly, these methodological limits call into

question the applicability of “successive conditional” BC methods for multivariate bias adjustment of high-dimensional climate

simulations.

Additionally to the methodological distinction described above, the few existing multivariate BC methods are based on the60

use of different statistical techniques. They may also present differences in terms of assumptions and philosophical features, e.g.

deterministic versus stochastic. Consequently, the quality of the correction outputs can vary largely from one method to another,

depending on their characteristics. It is hence crucial, in particular for end-users, to carefully evaluate the suitability of these

multivariate BC methods, and identify their advantages and limits, not only between the different categories of methodological

approaches but also between the different statistical techniques and assumptions. In this study, we present an analysis of four65

multivariate BC methods, and assess their performances in terms of adjustment of dependence structures for temperature and

precipitation time series. We focus in particular our intercomparison on methods belonging to the “marginal/dependence” and

the “all-in-one” categories. Due to the previously mentioned limitations of the “successive conditional” approach, no methods

belonging to this category are investigated. The selected four MBC methods present differences in terms of conceptual features,

statistical techniques used and assumptions. In particular, MBCs with different assumptions on non-stationarity are selected,70

i.e. differing on how they consider the simulated multi-dimensional changes between present (i.e calibration) and future (i.e.

projection) periods in the correction procedure. Moreover, in order to assess the potential benefits of using multivariate BC

methods relatively to univariate ones, one univariate quantile-mapping based BC method is included in the study as a bench-

mark. It provides a more extensive intercomparison framework in which quality of BC outputs can be assessed and compared

by evaluating univariate, inter-variable, spatial, and temporal properties, as well as multi-dimensional changes.75

In addition, each BC method is applied to correct climate model outputs over France and three sub-regions according to

two distinct reference datasets with different spatial resolutions. This permits to assess the potential influence of the reference

spatial resolution on bias correction results and to delineate guidance on relevant good practices for end-users concerning this

aspect.

This paper is organised as follows: Section 2 describes the model and reference data used and Section 3 presents the BC80

methods intercompared. Then, Section 4 presents the experimental set-up used in this study, while Section 5 displays the

results of the intercomparison. Finally, our findings are summarised, discussions are given and perspectives for future research

are proposed in Section 6.

2 Model and reference data

Institut Pierre-Simon Laplace (IPSL) coupled model (Marti et al., 2010; Dufresne et al., 2013) daily data with a 1.25◦ by85

2.5◦ spatial resolution are used in this study as model data to be corrected. Simulations of the scenario of atmospheric CO2

concentration pathway associated with a radiative forcing of +8.5 W.m−2 (RPC 8.5 scenario, i.e. the scenario with highest CO2

concentration) are selected. Daily temperature (T2) and precipitation (PR) time series from 1 January 1979 to 31 December
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2016 are extracted over the geographical area of France ([-5◦ E; 10◦ E]×[42◦ N; 51◦ N]), which corresponds to 321 continental

grid cells.90

As BC methods require a reference dataset to adjust the simulations, daily temperature and precipitation time series with

a 0.5◦ by 0.5◦ spatial resolution are first used from the “WATCH Forcing Data methodology applied to ERA-Interim data”

(WFDEI) from the EU WATCH project (Weedon et al., 2014) over the same geographical area of France. Note that, as spatial

resolution between WFDEI and IPSL-CM5 are different, IPSL data are regridded by a nearest neighbour technique to associate

each IPSL grid cell to its nearest WFDEI grid cell center.95

To assess the influence of the reference spatial resolution on BC results, we use another reference gridded dataset for

France with finer resolution: the “Systeme d’Analyze Fournissant des Renseignements Atmosphériques à la Neige” (SAFRAN)

reanalysis dataset (Vidal et al., 2010). Daily T2 and PR time series from SAFRAN have a 8km×8km spatial resolution and

divide France into 8981 continental grid cells. Similarly as for WFDEI, IPSL data are regridded to the SAFRAN resolution.

Once regridded IPSL simulations are obtained, each MBC method can be applied. However, as some MBC algorithms have100

difficulties in practice in very high-dimensional context (here for 8981 grid cells), we restrict the application of MBCs with

SAFRAN reference dataset over the Brittany region, located in the northwest part of France ([-5◦E ; 2◦E ]× [ 47◦N ; 49◦N]),

which corresponds to 345 continental grid cells. Note that we selected this sub-region of Brittany for SAFRAN, i.e. at fine

resolution, in order to have a similar number of grid cells as for France selected with the WFDEI reference dataset, i.e. at

coarser resolution. MBC methods have also been applied and evaluated over two others sub-regions of 345 grid cells located105

respectively around the Paris area and in southeast France. For sake of clarity, as same results were obtained for each of the

sub-regions, we will only present the results for Brittany in the rest of this study.

3 Multivariate bias correction methods

In this section is presented a brief description of the univariate BC method and the four multivariate BC methods implemented

in this study. As a reminder, results from the univariate CDF-t method are the benchmarks by which we will measure the110

benefits of considering multivariate aspects in the correction procedure instead of using univariate BC methods.

3.1 “Cumulative Distribution Function - Transform" (CDF-t)

The “Cumulative Distribution Function - Transform" (CDF-t) method is a univariate BC method initially proposed by Michelan-

geli et al. (2009) to correct the univariate distribution of a modeled climate variable. Since then, CDF-t has been applied for

various studies (e.g., Tramblay et al., 2013; Tobin et al., 2015; Defrance et al., 2017; Famien et al., 2018; Guo et al., 2018) and115

specific variants have been developed (e.g., Kallache et al., 2011; Vrac et al., 2016). The CDF-t approach applies, indepen-

dently to each variable, a univariate transfer function T , which permits to relate the cumulative distribution function (CDF) of

a variable of interest in the model simulations to that of the reference dataset. By assuming that T is valid in a climate different

from that of the calibration period, a new CDF for the bias corrected variable over the projection period is generated. Then,

a quantile-quantile approach is performed between the new (reference) CDF and the CDF from the model simulations during120
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the projection period to derive bias-corrected data. This two-step procedure permits to take into account potential changes

(between calibration and projection periods) of the univariate distribution in the correction procedure. For the special case of

precipitation, the “Singularity Stochastic Removal” version of CDF-t (Vrac et al., 2016) is applied to correct both precipitation

occurrences and intensities. More details about CDF-t can be found in Appendix A. In the following subsections, the four MBC

methods are presented.125

3.2 “Rank Resampling for Distributions and Dependences" (R2D2)

The “Rank Resampling for Distributions and Dependences" (R2D2) method, developed by Vrac (2018) in the context of

“marginal/dependence” category, is an extension of the “Empirical Copula - Bias Correction" (EC-BC, Vrac and Friederichs,

2015) method. R2D2 is based on a reordering technique named the Schaake Shuffle. Originally described by Dr. J. Schaake in

2002, it was introduced in the scientific literature by Clark et al. (2004) to postprocess temperature and precipitation forecasts130

from Numerical Weather Prediction models. This shuffling technique consists in reordering a sample such that its rank structure

corresponds to the rank structure of a reference sample, and thus allows to reconstruct multivariate dependence structures. The

Schaake Shuffle has already been applied for various applications in climate science, such as ensemble postprocessing (e.g.,

Möller et al., 2013; Schefzik et al., 2013), and in numerous studies (e.g., Voisin et al., 2010; Verkade et al., 2013). According

to the “marginal/dependence” category to which it belongs, the R2D2 method performs first a univariate correction to adjust135

the marginal distribution of each climate variable. In this study, CDF-t is used for this first step, but it has to be noted that other

univariate methods can be employed. Instead of directly applying the Schaake Shuffle and reproducing the temporal structure

of the reference (as in Vrac and Friederichs, 2015), the method introduces some variability to the timing of the events, by

allowing for the possibility to select a “reference dimension” for the Schaake Shuffle, i.e., one physical variable at one given

site, for which rank chronology remains unchanged. Reconstruction of inter-variable and spatial correlations of the reference140

is then performed using the Schaake Shuffle with the constraint of preserving the rank structure for the “reference dimension”.

Note that the R2D2 method can generate as many corrections as the number of variables to be corrected, and all with identical

inter-variable and spatial dependencies but with different temporal structures, depending on the selected reference dimension.

Hence, R2D2 introduces some stochasticity in the bias correction. For practical reasons, in the following, we will reduce

the number of corrected outputs: only R2D2 corrections with reference dimensions located either in Paris or in the center of145

Brittany (respectively for France and Brittany regions) will be analyzed in Sect. 5. It must also be noted that, by using the

Schaake Shuffle technique, R2D2 assumes by construction the inter-variable and spatial dependence structures (i.e., the rank

correlations, or copulas) to be stable in time. Some more mathematical details about R2D2 are expressed in Appendix B.

3.3 “Dynamical Optimal Transport Correction" (dOTC)

The “Dynamical Optimal Transport Correction" (dOTC) method was developed by Robin et al. (2019), in the “all-in-one”150

category, i.e. correcting the marginal distributions and dependence structures altogether at the same time. Based on optimal

transport theory, it is a generalisation of the univariate quantile mapping techniques to the multivariate case. dOTC is aimed at

constructing a multivariate transfer function, called a transport plan, to perform bias correction by minimizing a cost function
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associated with the transformation of a multivariate distribution to another. Multivariate distribution of a biased random variable

and its correction are linked together through this particular transfer function, where for any value of the variable to correct is155

associated a conditional law linking the biased value and its correction. Corrections are then picked (partially) randomly from

these conditional laws, introducing some stochasticity into the bias correction procedure.

As for univariate quantile mapping, the way the transfer function is constructed for dOTC plays a decisive role in the obtained

bias correction outputs. As explained before, the univariate method CDF-t is able to learn the change of univariate distributions

between the calibration and the projection periods for the climate model, and transfers this change to the observational world.160

Following this philosophy in a multivariate context, dOTC is designed to learn not only the change of univariate distributions,

but also the change of multi-dimensional properties of the model, and allows to tranfer them in the corrections. Contrary to

R2D2, it assumes non-stationarity of the dependence (copula) structure between the calibration and the projection periods, and

permits to take into account the evolution of the model (e.g., induced by climate change) in the bias correction procedure. More

explanations about dOTC are given in Appendix C.165

3.4 “Multivariate Bias Correction with N-dimensional probability density function transform" (MBCn)

The “Multivariate Bias Correction with N-dimensional probability density function transform" (MBCn) was developed by Can-

non (2018) in the context of the “marginal/dependence" category. Based on an adaptation of an image processing algorithm

used to transfer colour information, MBCn permits to transfer statistical characteristics of a reference multivariate distribution

to the multivariate distribution of climate model variables. Being part of the “marginal/dependence” category, univariate dis-170

tributions of climate variables are first adjusted using a 1d-BC method. For this step, MBCn uses the Quantile-Delta Mapping

method (QDM, Cannon et al., 2015) that preserves absolute or relative changes in quantiles, e.g. for respectively variables like

temperature or ratio variables like precipitation. Once univariate distributions are corrected, the dependence structure is adjusted

by using an iterative process. At each step, data are multiplied by random orthogonal rotation matrices to partially decorrelate

the climate variables to correct. QDM corrections are then applied on (partially) decorrelated data before the recorrelation step175

with the inverse random matrices. This step (i.e., including rotation, QDM corrections and back rotation) is repeated iteratively

until convergence is reached between the multivariate distributions of reference and climate simulations during the calibration

period. Indeed, those iterations permit correcting the dependence structure of the model. Moreover, by doing so – and similarly

to dOTC – MBCn allows changes in the dependence structure to be in accordance with the model changes. More details about

MBCn can be found in Appendix D.180

3.5 “Matrix Recorrelation” (MRec)

Bárdossy and Pegram (2012) presented an MBC, hereafter referred to as “Matrix Recorrelation” (MRec). The latter lies in the

“all-in-one” category and relies on a matrix recorrelation technique. The MRec method consists in first transforming separately

each variable of both model and references to the univariate normal distribution with Gaussian quantile-quantile method. This

transformation step is particularly appropriate for variables with mixed distributions (e.g. precipitation composed of wet and dry185

days), for which computing Pearson correlation matrix on Gaussianized data instead of raw data permit to better describe their
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dependence structure. Then, a combination of “decorrelation" and “recorrelation" steps using decompositions of correlation

matrices through Singular Value Decomposition (SVD, Beltrami, 1873; Jordan, 1874a, b; Stewart, 1993) is applied on the

Gaussianized model data, forcing its Pearson correlation matrix to match that of the Gaussianized observed data during the

calibration period. For the projection period, the same "decorrelation-recorrelation" matrix is directly applied on Gaussianized190

model data, which permits to preserve, for the projection period, the potential changes in correlations as simulated by the model.

Finally, for both periods, a quantile-quantile back transformation is applied separately for each variable between recorrelated

variables and references to correct marginal distributions. See Appendix E for more details.

Contrary to the R2D2, dOTC and MBCn methods presented previously, MRec differs in being designed to correct only

a particular feature of the multivariate dependence structure, here Pearson correlations. Implicitly, it makes the assumption195

that Pearson correlation values are sufficient to determine the full multivariate dependence structure, which can be called into

question for variables with skewed and heavy tailed distributions (like precipitation) and with potentially complex interactions

that Pearson correlation cannot capture as a whole. For this reason, implementing the MRec algorithm in the present intercom-

parison study permits to compare the performances of an MBC method based on such an assumption relatively to methods

intended to correct the non-Gaussian dependence structure of climate simulations.200

4 Design of Experiments

4.1 Settings of MBCs

Multivariate BC methods can be implemented in different dimensional configurations, depending on the need of the users to

correct inter-variable and/or spatial correlations. However, in most cases, multivariate BC methods are applied grid cell by grid

cell by practitioners to correct inter-variable properties of climate simulations, disregarding spatial structures (e.g., in Meyer205

et al., 2019; Guo et al., 2019). We tested and assessed this approach for each method, but also expanded the study to include

high-dimensional configurations of MBC to adjust spatial and full (i.e. spatial and inter-variable jointly) dependence structures

of climate simulations. Therefore, in the following each of the four MBC methods is applied according to the three following

configurations:

– a 2-dimensional (hereinafter referred to as “2d-") version, for which the MBC method is applied independently at each210

grid cell but jointly corrects both temperature and precipitation time series. For example, to correct a climate dataset

of 321 grid cells, the MBC method is performed 321 times, i.e. for each grid cell across the whole grid. By doing so,

2d-versions are aiming to correct inter-variable correlations within each grid cell.

– a Spatial-dimensional (hereinafter referred to as “Spatial-") version, where all time series for a particular physical vari-

able are corrected jointly, but independently from the other physical variable. Hence, for this version, the MBC method215

is performed twice, adjusting on the one hand all time series for temperature and, on the other hand, all time series

for precipitation. Thus, Spatial-versions are designed to adjust spatial correlations of climate models for each physical

variable separately.
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– a Full-dimensional (hereinafter referred to as “Full-") version, where all time series are corrected jointly over the entire

grid for both temperature and precipitation. The MBC method is hence applied only once, and is intended to correct220

together the inter-variable and spatial correlations of the simulations.

Regarding the initial settings for MBCn, preliminary tests have been conducted with different dimensional settings to find

the number of iterations ensuring the converge of the algorithm depending on the dimensional configuration. With respect to

the results of these tests (not shown), the number of iterations has been chosen to be equal to 50 for 2d-configurations and 200

for both Spatial- and Full-versions.225

4.2 Protocols of bias correction

In this study, the BC methods presented above are applied to correct IPSL GCM simulations with either the WFDEI (0.5◦×
0.5◦) or the SAFRAN (8km×8km) data as references. Data are available for the period 1979-2016, i.e. 38 years, and are

divided into two intervals of 19 years: 1979-1997 and 1998-2016. As a reminder, daily temperature and precipitation times are

corrected on 321 and 345 grid cells for France and Brittany regions respectively. For each method, bias correction is performed230

separately for the 12 months in order to preserve seasonal properties.

The first protocol in this study takes advantage of the cross-validation technique to generate bias corrected outputs for

the period 1979-2016. Dividing the time period into two parts permits to perform a two-fold cross-validation procedure: the

1979-1997 period is first defined as the calibration period, and the 1998-2016 portion, called the projection period, is used for

out-of-sample validation. Swapping of the two periods is then done, so that each period has been used once for calibration235

and once for validation. Bias correction for the period 1979-2016 is then achieved by assembling the adjusted outputs for the

projection periods obtained at each step. This 2-fold protocol, largely used in the climate science literature (e.g. in Cannon,

2018), allows to reduce overfitting by using two distinct sub-periods and is hence well suited to evaluate our results. However,

by adjusting the period 1979-1997 according to the 1998-2016 period, this protocol presents the drawback to potentially hide

the climate change signal present in the model. Thus, proper assessment of the multi-dimensional properties evolutions cannot240

be conducted via this procedure.

Hence, to evaluate the non-stationary behavior of BC methods, a second protocol is defined. Similarly to the first protocol, the

1998-2016 period is corrected by using the 1979-1997 portion as calibration period. However, here, 1979-1997 simulations are

corrected directly with respect to the 1979-1997 references, i.e., without cross-validation. Hence, the potential climate change

signal is not distorted by undesirable effects resulting from the protocol procedure, allowing for the appropriate assessment of245

change aspects of the BC methods between the two periods.

In accordance with common practice, thresholding of 1 millimetre for precipitation time series is applied before evaluation

to replace values lower than 1 millimetre by 0 after correction.
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5 Results

The correction outputs are evaluated according to different characteristics designed to focus on (i) marginal, (ii) inter-variable,250

(iii) spatial, (iv) temporal and (v) non-stationary properties. Characteristics (i-iv) are evaluated on the 1979-2016 period for

the adjusted outputs obtained according to the 2-fold protocol and are compared to those from the reference dataset. However,

regarding non-stationary properties, corrected outputs from the second protocol are used and results are compared to the

simulations to highlight the performances of the MBC methods regarding their capability to reproduce (or not) the multi-

dimensional changes of the model between the 1979-1997 and 1998-2016 periods.255

In the following, evaluation is presented for the winter season (December-January-February) only, as conclusions remain

generally the same for the other seasons. However, in order to provide nuances, additional results for the summer season

(June-July-August) are displayed in the Supplement when needed.

5.1 Univariate distributions properties

First, bias-corrected data are evaluated relatively to univariate statistics. To do so, for temperature and precipitation, the dif-260

ference of mean values between the bias-correction and the reference at each grid cell is computed. The same computation

is also made for standard deviation. Absolute difference is calculated for temperature mean, while relative difference is more

appropriate for precipitation mean as well as for standard deviation of both physical variables. Results are shown with boxplots

for the plain IPSL simulations and for a selection of BC outputs in Fig. 1 for France during the winter season. The results

for Brittany during winter are presented in Fig. S1 of the Supplement. As “marginal/dependence” MBC methods correct uni-265

variate properties independently from the dependence structure, results for their 1d-characteristics are equivalent between the

three dimensional configurations (2d-, Spatial- and Full-). Therefore, to avoid redundancy, results for R2D2 and MBCn are

presented for only one arbitrary dimensional configuration, the other configurations giving the exact same mean and standard

deviation results. Clearly, Fig. 1 shows large differences between the IPSL simulations and the references for both temperature

and precipitation, and illustrates the necessity to adjust 1d-distributions of the model before using it in subsequent analyses.270

Multivariate BC methods implemented in this study display different performances in adjusting the univariate properties. In

agreement with the properties of the “marginal/dependence” MBC methods, R2D2 and MBCn present exactly the same results

as the 1d-BC methods they use, i.e. respectively CDF-t (shown) and QDM (not shown). With regard to the performances of

dOTC and MRec, some instabilities are found relatively to the dimensional configuration. For dOTC, increasing the number of

dimensions to correct from 2d- to Full- seems to have a slight, but non-negligible, cost on the correction of mean and standard275

deviation (Fig. 1b and 1c). However, depending on both the climate variable and the statistical feature, the increasing deteri-

oration with respect to the dimensional setting is not systematically observed, as it can be seen in Fig. 1a and 1d. Concerning

MRec, a slight deterioration of correction is often observed from 2d- to Spatial- versions (Fig. 1b, 1c and 1d). Regarding the

Full-version, the MRec algorithm produces results that are clearly unsatisfactory. Instead of improving the simulations, Full-

MRec corrections strongly degrade the univariate statistics. This underperformance of the MRec method over France appears280

in a context of high-dimensional correction when the number of available data is not large enough compared to the number
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of dimensions. In this case, the inverses of high-dimensional sample covariance matrices are a highly biased estimator of the

inverse of covariance matrices, which consequently largely affects the quality of the Full-MRec corrections. Anyhow, the in-

creasing degradation, whether it is slight or not, of univariate distributions corrections in high-dimensional contexts is one

(undesirable) feature of “all-in-one” methods, here observed for dOTC and MRec. Indeed, “all-in-one” methods are designed285

to adjust both univariate distributions and dependence structure of climate simulations at the same time, which involves a

possible deterioration of 1d-marginal distributions during the combined correction process.

For Brittany, the same conclusions hold for R2D2, dOTC and MBCn, indicating no particular influence of spatial resolution

on the results of the marginal statistics adjustment for these methods. Nevertheless, and quite interestingly, for the Full-MRec

outputs, the underperformance observed for France is not obtained for Brittany (Fig. S1). A possible reason explaining why290

Full-MRec version is presenting adequate results on this particular region (and the two other sub-regions, not shown) concerns

the size of its geographical area and will be discussed in more details in the subsection 6.2.

5.2 Inter-variable correlations

To evaluate inter-variable dependence structure, Spearman correlations between temperature and precipitation are computed at

each grid cell to measure the monotonic relationship between the two physical variables. By using rank correlation, it presents295

the particularity of not being value-dependent, and is appropriate for temperature and precipitation studies presenting extreme

values and/or lower bound, e.g. for precipitation (Vrac and Friederichs, 2015). The resulting maps – for the references, the

IPSL model and the bias-corrected data – are displayed in Fig. 2 for both France and Brittany. Those maps are also provided

as differences with respect to the reference one in Fig. S2.

For France, map for the IPSL simulations (Fig. 2b1) is quite different from the WFDEI map (Fig. 2a1). As univariate300

CDF-t method does not modify rank sequence of temperature and precipitation time series, it globally conserves both the

rank correlation intensities and structures of the IPSL model for each region and does not provide any correction of this aspect

(Fig. 2c1). By construction, clear improvements of the inter-variable correlation structure are provided by 2d-versions (Fig. 2d1,

2g1, 2j1 and 2m1). This is also the case for most of the full-configuration of MBCs (respectively, Fig. 2f1, 2i1, 2l1) despite

possible differences in intensities. Note that correlation maps for 2d-R2D2 (Fig. 2d1) and Full-R2D2 (Fig. 2f1) are identical.305

Indeed, for the inter-variable aspect, 2d-version is nested within the Full-configuration (see Vrac, 2018), due to the use of the

reordering technique in R2D2. Also, for R2D2, the choice of the reference dimension does not have any impact on results in

the inter-variable context, as it only modifies the rank chronology of time series. As expected from previous explanations, map

for the Full-version of MRec (2o1) indicates a strong deterioration of the inter-variable correlation structure, with a majority

of correlation values dropping down to around 0. It highlights again the inability of the method to work properly for France310

in this dimensional setting. Concerning Spatial-versions of MBCs (Fig. 2e1, 2h1, 2k1 and 2n1), as they adjust the whole

simulated field of temperature and precipitation separately, they disregard inter-variable relationships. It results in BC outputs

with strongly weakened inter-variable correlations structures.

Regarding Brittany, the same conclusions can be drawn for R2D2 and dOTC, for which spatial resolution does not affect

the results of inter-variable properties adjustment. As noted previously, Full-MRec over Brittany provides more satisfactory315
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results than those obtained over France, and are in line with those obtained for R2D2 and dOTC. However, for MBCn outputs,

a degrading effect from 2d- (Fig. 2j2) to Full- (Fig. 2l2) is observed, in providing a corrected correlations’ structure but with

underestimated intensities in the high-dimensional context.

5.3 Spatial correlations

To assess the quality of the corrections in terms of spatial correlations, mean correlograms, i.e. mean Spearman correlation320

in function of distance, are computed for temperature and precipitation separately after removing daily areal mean. Indeed,

climate variables can present a high day-to-day variability that can affect the evaluation of spatial criteria if not removed (e.g.,

Vrac, 2018).

Figure 3 and S3 show the results obtained for respectively precipitation and temperature for the different climate datasets.

Note that the choice of the reference dimension for R2D2-versions modifies results for temporal criteria, and consequently325

for some of the spatial criteria. Hence, in the rest of this work, results from R2D2-versions are presented with the reference

dimension corresponding to the variable under interest. For sake of brevity, results for precipitation are mainly discussed in

this subsection and nuances are made when different results are obtained for temperature.

For France, IPSL precipitation correlogram is fairly distinct from WFDEI one. The univariate method CDF-t, by simply

adjusting univariate distributions, gets closer to the reference dataset (Fig. 3a1), which may be here confusing. Indeed, although330

CDF-t adjusts the univariate distributions, it is supposed to preserve the rank sequence of the simulations and therefore spatial

correlations are disregarded during the BC procedure. But, as the Singularity Stochastic Removal version of CDF-t (Vrac et al.,

2016) is explicitly designed to improve dry days frequency, the method consequently modifies rank correlations, which results

here in an improvement of spatial statistics for precipitation. Also, an additional reason is that the correction of the univariate

distributions provided by CDF-t associated with the removing of daily areal means modifies ranks of the data, resulting in335

getting a correlogram closer to that from the reference dataset, and so improves inter-site variability.

Correlograms of 2d-versions (dotted) for the four MBC methods (Fig. 3b1, 3c1, 3d1 and 3e1) show results equivalent

to CDF-t. Indeed, 2d-configurations MBCs adjust univariate distributions and inter-variable correlations without modifying

spatial correlations. The improvements of correlograms for 2d-versions thereby illustrate again that the correction of univariate

distributions improves spatial statistics for France. Particularly, 2d-R2D2 results (Fig. 3b1) are, by construction, exactly the340

same as those from CDF-t (Vrac, 2018). Indeed, by construction, 2d-R2D2 driven by precipitation preserves Spearman spatial

correlations from CDF-t for the precipitation variable. Note that, however, it is definitely not the case for temperature spatial

structure (not shown) when 2d-R2D2 is driven by precipitation. Indeed, for 2d-R2D2 outputs driven by a specific physical

variable, spatial structures of the “other” variable are strongly degraded by the reordering step.

Correlograms associated with Spatial- and Full-versions outputs for R2D2 (Fig. 3b1) nicely fit the one from the reference345

dataset – even at long distances – and provide major improvements in adjusting the spatial properties of the simulations. How-

ever, for similar reasons as those explained for 2d-R2D2, undesirable degradation effects on spatial cross-correlation between

temperature and precipitation are obtained for Spatial-R2D2 outputs (not shown). Therefore, it indicates that practitioners

must favour the use of Full-R2D2 for their applications. With regard to Spatial- and Full-dOTC (Fig. 3c1) and Spatial-MRec
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(Fig. 3e1), although correlograms are very close to those from the reference dataset, they provide slightly less pronounced350

improvements compared to the 2d-versions, suggesting a slight degrading effect on results for these methods by considering

more variables in the correction. As expected, the correlogram associated with Full-MRec outputs is away from reference

data, indicating once again the dysfunction of the MRec method for France. For Spatial- and Full-MBCn (Fig. 3d1), at long

distances, similar improvement of spatial correlations are provided as those from dOTC. However, large deviations between

correlograms are found for short distances, suggesting a failure for the MBCn method to adjust local spatial properties in a355

high-dimensional context.

For Brittany, same conclusions hold for R2D2 (Fig. 3b2), presenting again a stability of results regardless of both the spatial

resolution and the geographical area considered. For dOTC (Fig. 3c2), Spatial- and Full-versions now provide major improve-

ments of spatial correlations compared to their 2d-versions and present results similar to Spatial- and Full-R2D2. With regard

to MRec (Fig. 3e2), the dysfunction of the Full-version is no longer observed. It now provides results similar to Spatial-MRec360

and better than 2d-MRec. However, it is worth mentioning that, for Brittany, different results are obtained with MRec between

precipitation and temperature spatial corrections. While, for temperature, Spatial-MRec outputs (Fig. S3e2) provide reasonable

results with a correlogram relatively close to the one of the reference data, a more moderate improvement of inter-site variabil-

ity is obtained for precipitation (Fig. 3e2). Explanations for these results will be provided in subsection 6.2. Regarding MBCn

(Fig. 3d2), large deviations between correlograms are found for both short and large distances, underlining some instability of365

the algorithm to adjust for spatial correlations.

5.4 Temporal structure

The different MBC methods implemented here, are not intended to adjust temporal structures. Indeed, these multivariate

procedures adjust multivariate distributions without accounting for any temporal information. However, although the temporal

structures are not adjusted according to the reference, MBCs necessarily modify the rank sequences of the simulations (Vrac,370

2018). This modification is not performed in the same way depending on the MBC or the dimensional configuration used, and

remains therefore to evaluate. To do so, 1-day lag Pearson autocorrelations are computed at each grid cell for temperature and

precipitation. The resulting maps for the different climate datasets are displayed in Fig. 4 (resp. Fig. S4) for temperature (resp.

precipitation).

For France, IPSL temperature autocorrelations (Fig. 4b1) are in relative agreement with WFDEI reference dataset (Fig. 4a1),375

showing equivalent high values. Similar autocorrelation map are provided by CDF-t outputs (Fig. 4c1). It is however not the

case for precipitation (Fig. S4c1), for which a decrease of autocorrelation values is observed over France with respect to the

reference and to the model. Although not observed for temperature, it highlights that the univariate correction could have a

non-negligible effect on Pearson autocorrelation. Interestingly, 2d-versions (Figs. 4d1, 4g1, 4j1 and 4m1) do not lead to a

strong modification of temporal properties with respect to CDF-t. However, from one method to another, temporal structure380

modifications are not equivalent for Spatial- and Full-versions. For dOTC and MBCn (Figs. 4h1, 4i1, 4k1 and 4l1), as the

number of dimensions increases, the temperature autocorrelations seem to be more and more modified, with intensities of

values decreasing slightly from Spatial- to Full-versions. This result can also be seen for precipitation in Fig. S4. With regard
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to MRec, its Spatial-version (Fig. 4n1) presents similar results than those obtained from Spatial-dOTC and Spatial-MBCn.

Also, and as expected, Full-MRec outputs (Fig. 4o1) do not provide sensible results due to the inability of the method to385

work properly over the whole France. Concerning R2D2, as the reference dimension driving the rank sequence is the same

between Spatial- and Full-configurations, same autocorrelation maps are obtained for these two versions (Figs. 4e1 and 4f1).

Moreover, autocorrelation value in the grid cell of the reference dimension, i.e. located over Paris for France, is exactly equal

to the corresponding one in the CDF-t outputs, by construction. Remarkably, as mentioned by Vrac (2018), autocorrelations

of the CDF-t outputs are partially reproduced around the specific locations of the reference dimensions for Spatial-R2D2 and390

Full-R2D2 versions, as evidenced by the darker red zone around Paris. This reflects the existing spatial correlations between the

reference dimension and its local neighbourhood, which results in partially reproducing the temporal properties of the model

over this area. However, for precipitation (Figs. S4e1 and S4f1), this result is not as clear-cut as it is for temperature, probably

due to weaker spatial correlations around Paris for this physical variable.

In a general way, the same conclusions can be drawn for Brittany, sometimes even better illustrated due to a narrower395

color scale. The results for Full-MRec are easier to interpret. They present results similar to those from 2d- and Spatial-MRec

(Fig. 4o2). In particular, it indicates that, contrary to dOTC and MBCn, MRec does not present an increasing modification of

temperature autocorrelations from 2d- to Full-versions.

To better understand the results obtained from Fig. 4, further explanations are required. The relative agreement of Pearson

autocorrelation values between the reference and IPSL dataset showed by Fig. 4 might lead one to believe that temporal400

properties of the model are quite correct for temperature, which is in reality misleading for two main reasons. First, 1-day lag

Pearson autocorrelation permits to assess only a particular feature of the temporal properties, which is obviously insufficient

to draw any general conclusions on the quality of simulations concerning these aspects. For example, by simply computing

Pearson temperature autocorrelations for higher lag values, a discrepancy of results is obtained between the reference and

the simulations (not shown). Second, Pearson autocorrelations depend on two statistical characteristics of time series: their405

variability and their temporal rank structures. As implemented in Fig. 4, the Pearson autocorrelation metric is hence not able

to dissociate them. The similarity between reference and model autocorrelations can then potentially be the combined result of

errors stemming from both biased univariate distributions and wrong rank structures of the model.

To better assess temporal structure changes brought by MBCs, the calculation of rank correlations between the bias corrected

time series and the raw climate model simulations is performed for each physical variable and at each grid cell. Results for410

temperature and precipitation are displayed with boxplots, respectively in Figs. 5 and S5. The closer the values of the boxplots

are to 1, the closer the rank chronologies of the MBC outputs are to the rank chronologies of the model. For France, as expected,

similar temperature rank structures are observed between the model and CDF-t/2d-R2D2 outputs (Fig. 5a). For the other 2d-

versions, rank correlation values are quite close to 1 as well, suggesting that dOTC, MBCn and MRec methods in their 2d-

configuration modify only slightly the rank structure of the initial simulations. For Spatial- and Full-configurations, dOTC and415

MBCn change moderately the rank structures even though they consider more dimensions in the correction. Concerning MRec,

without analysing the Full-outputs, the increasing modification with dimensionality is also observed between 2d- and Spatial-

MRec outputs, although less pronounced. In contrast, for Spatial- and Full-R2D2 outputs, the changes in the rank structures
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for France are substantially larger than those discussed until now. This result is also obtained for precipitation in Fig. S5a with

an even larger range. The principal reason lies in the fact that, as already explained, R2D2 partially preserves rank sequences420

of the CDF-t outputs – and therefore of the IPSL model – in the direct neighborhood of the reference dimensions, but strongly

modifies the rank structures outside this neighbourhood, which results in obtaining some low Spearman correlation values in

Fig. 5a and Fig. S5a .

For Brittany, results show a less pronounced modification of rank structure for both temperature (Fig. 5b) and precipitation

(Fig. S5b) than those observed for France. In particular for temperature, similar rank correlations are obtained for all versions425

of the methods, even for Spatial- and Full-R2D2 outputs, indicating that the number of dimensions has potentially a non-

significant effect on this criteria over a smaller area. The differences of results between France and Brittany highlight that the

size of the region of interest seems to have a non-negligible influence on the temporal properties of BC outputs.

5.5 Multi-dimensional changes analysis

When correcting climate simulations, in practice, while climate simulations for the present period are adjusted with respect430

to observations, no reference data are available for the correction of future periods. Assumptions of either stationarity or non-

stationarity of copula are then made within the MBCs concerning the change of the multi-dimensional features between present

and future periods. This has then consequences on how MBCs can account for the changes in the multidimensional properties

of the climate simulations. Therefore, using the second protocol defined in subsection 4.2, we now focus on how the different

MBC methods reproduce the change of inter-variable and inter-site structures, as given by the model to be corrected between435

two different periods.

5.5.1 Analysis of change in inter-variable correlations

Fig. 6 shows, for the bias-corrected outputs, the maps of the difference between the Spearman correlation between temperature

and precipitation, computed for the calibration (1979-1997) and the projection (1998-2016) period, respectively. It permits to

visually assess part of the change in the inter-variable dependence structure. Over France, inter-variable change of the IPSL440

simulations (Fig. 6b1) seems to be distinct from those of WFDEI (Figs. 6a1). CDF-t outputs (Fig. 6c1) reproduce globally the

change of the simulations, as they present similar maps. Concerning results for the 2d-(Fig. 6d1) and Full-versions (Fig. 6f1)

of R2D2, they present inter-variable rank correlation values close to 0. This illustrates the stationarity assumption in R2D2: the

copula function (i.e., dependence structure) of the observations during the calibration period is reproduced for both calibration

and projection, resulting in having no change of inter-variable rank correlations. For their part, 2d-dOTC, 2d-MBCn and445

2d-MRec maps (resp. Figs. 6g1, 6j1 and 6m1) present roughly the same spatial structures for the differences of Spearman

correlations, which indicates that the evolution of the simulations is somehow taken into account in the correction procedures.

It must be remarked that, contrary to dOTC and MRec, the stochastic generation of random rotation matrices within the MBCn

algorithm leads to get a non-negligible variability in the estimation of the evolution (not shown). This highlights a particular

aspect of MBCn: contrary to other methods, MBCn is based on a stochastic procedure, which has a significant impact on its450

adjustments. Consequently, the quality of MBC data obtained from MBCn can differ from a correction to another for the same

14

https://doi.org/10.5194/esd-2020-10
Preprint. Discussion started: 6 March 2020
c© Author(s) 2020. CC BY 4.0 License.



climate simulation, depending on the random rotation matrices generated in the algorithm and on the stopping rule (i.e., number

of iterations). Interestingly, concerning the methods Spatial-versions (Figs. 6e1, 6h1, 6k1 and 6n1), outputs show changes of

inter-variable rank structure similar to those from the model. Indeed, and as for CDF-t, rank inter-variable correlations are not

adjusted with Spatial-versions. Consequently, the change of inter-variable rank structure of the model is somehow preserved in455

Spatial-versions outputs.

For the Full-configuration maps of dOTC and MBCn (Figs. 6i1 and 6l1), changes simulated by the model are not reproduced

at all, which might be due to the failure of these methods to handle the change in time of this statistical feature in high-

dimension. As expected, Full-MRec map (Fig. 6o1) does not provide adequate results due to its inability to adjust the simulated

data for France in this dimensional setting.460

Concerning the results for Brittany, conclusions similar to those obtained for France can be drawn for R2D2 outputs. How-

ever, conclusions are quite different for CDF-t, 2d-dOTC, 2d-MBCn and 2d-MRec. Indeed, the changes of rank correlations

obtained for these outputs (Figs. 6c2, 6g2, 6j2 and 6m2) are not in agreement at all with the simulated ones (Fig. 6b2). In fact,

changes from 2d-outputs are in line with those from CDF-t, illustrating the importance of the correction of 1d-characteristics

for inter-variable changes. It is also the case for the Full-MRec map (Fig. 6o2), providing more sensible results than those465

obtained for France.

Generally speaking, for 2d- and Spatial-versions of MBCs making the assumptions of copula non-stationarity, similar results

than those brought by their univariate BC outputs are obtained, suggesting the importance of the correction of univariate

distributions for changes of inter-variable rank correlations. Additional results in agreement with these conclusions are obtained

for summer and are displayed in Fig. S6.470

5.5.2 Analysis of change in spatial correlations

In order to assess changes of spatial structures in bias-corrected outputs, p-Wasserstein distance (see, e.g., Villani, 2008, chap.

6) is computed. This metric measures the distance between two multivariate probability distributions µ and υ, and is defined

as follows:

Wp(µ,υ) :=
(

inf
γ∈τ(µ,υ)

∫

Rd×Rd

||x− y||pdγ(x,y)
) 1

p

, (1)475

with τ(µ,υ) denoting the set of probability measures on Rd×Rd with respectively µ and υ as first and second margins, and

||.|| the Euclidean distance. In the present study, p is taken equal to 2, as it ensures the uniqueness of the minimization problem

(Santambrogio, 2015). The Wasserstein distance can be seen as the minimum “cost” for transforming a multivariate probability

distribution µ into another, here υ. In particular, computing Eq. (1) between a distribution characterising a sample during the

calibration period and another distribution characterising a sample during the projection period, permits to provide information480

on its change across time, whether it represents a univariate, multi-variable or multi-site (or both) distribution. More details

on how to compute in practice this distance are provided in Appendix C. The resulting metric, denoted Wd, is calculated

using the R package ‘transport’ (Schuhmacher et al., 2019) over the region of interest according to three different multivariate

distributions:
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– on ranks of temperature only over the whole region to assess change in the spatial dependence structure of temperature;485

– on ranks for precipitation only over the whole region to assess change in the spatial dependence structure of precipitation;

– on ranks for both temperature and precipitation over the whole region to assess change in the inter-variable and spatial

dependence structures of the two variables.

In particular, computing Wd using ranks instead of raw values allows removing the change in the univariate distributions

from that in spatial and inter-variable relationships. Results for the three Wasserstein distances on ranks are displayed in Fig. 7490

for both France and Brittany. Additional results for Wd on raw values are displayed in Fig. S7 for information purposes only.

For France (Fig. 7a), the three Wd are slightly higher for the reference than for the model data (represented by straight lines).

However, the differences are quite small. Concerning CDF-t outputs, as expected, it reproduces globally the spatial structure

change of the model.

For 2d-R2D2 outputs, two results are presented, corresponding to those obtained with either temperature or precipitation495

used as reference dimension. For the reasons already given (see e.g. subsection 5.3), results for 2d-R2D2 driven by temperature

(resp. precipitation) for the change of spatial structure of temperature (resp. precipitation) are by construction identical to those

from CDF-t. Nevertheless, for the spatial structure of temperature and precipitation jointly (triangle), Wd for 2d-R2D2 outputs

are quite high. Indeed, when 2d-R2D2 version uses either temperature or precipitation rank sequence to drive the “other”

physical variable at each grid cell, the method is likely to degrade the spatial structures of the “other” variable in a different500

way for calibration and projection periods. Consequently, the Wasserstein distance captures a “change” in the spatial structure

of the two variables between these two periods, but is in fact due to its deterioration. Concerning Spatial-R2D2, low Wd are

observed for the change of the spatial structures for temperature and precipitation separately, illustrating the stationarity copula

assumption used. However, for the Wd computed for the whole multivariate distribution (triangle in Fig. 7a), Spatial-R2D2

presents a higher value, close to that of the IPSL simulations. Indeed, as already explained in 5.5.1, within Spatial-R2D2,505

copula functions of temperature and precipitation are adjusted separately without correcting inter-variable rank correlations,

which results in partially preserving the changes of inter-variable rank structure of the model between calibration and projection

period. With regard to Full-R2D2, the three Wd are all quite low, in agreement with the stationarity copula assumption it uses.

However, it should be noted that the Wd are not equal to 0, whereas, theoretically, no change of spatial structure is performed

by Full-R2D2. In addition to the reason already cited concerning dry days frequency correction, this is also due to the fact that,510

in the present study, bias corrections have been performed on a monthly basis, while the evaluation is done at a seasonal scale.

For both dOTC and MBCn outputs, Wd are higher than those from the model. Although the changes in spatial correlations

derived by these two methods are too strong, it nevertheless highlights their ability to capture such a change from the model

and using it in their bias correction procedure. In particular for MBCn, the three Wasserstein distances increase according to

the number of dimensions considered in the bias correction, from 2d- to Full-versions. It can be linked with the deterioration515

of the quality of results already observed for spatial features for very high-dimensional bias correction. Regarding MRec, and

without speaking about its Full-version, similar observations can be made for 2d- and Spatial-outputs. In a general way, the Wd
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associated to the different configurations for dOTC, MBCn and MRec are always above the Wasserstein distances for R2D2,

illustrating somehow the assumptions made by these methods about the stationary or non-stationary copula functions.

For Brittany (Fig. 7b), the Wd values computed for the model are quite low, indicating little simulated change of spatial520

structures for this region. Consequently, the differences of Wd between methods assuming stationarity and non-stationarity

of copula functions are less pronounced, but the same conclusions as those drawn for France hold. However, for Full-MRec

outputs, Wd values are in relative agreement with those from the model, highlighting the ability of the method to preserve

(partially) the simulated changes of spatial structure between the calibration and the projection periods, for a smaller region.

6 Conclusion, discussion and future work525

6.1 Conclusion

In this study, we have presented a global picture of the performances of four multivariate bias correction (MBC) methods

designed to adjust various multivariate properties of climate simulations. These MBC methods were carefully selected for their

differences in terms of methodologies, statistical techniques used, assumptions and philosophical features. For each method,

three dimensional configurations have been tested to correct climate simulations from the IPSL model: a “2d” version to adjust530

temperature and precipitation time series together but separately for each grid cell, a “Spatial” version aiming to correct the

simulated fields of temperature and precipitation separately, and a “Full” version designed to adjust the two physical variables

jointly over the entire domain. Depending on the versions, the objectives of adjustments for multivariate properties are not

the same: whereas “2d” and “Spatial” versions are designed to correct respectively inter-variable and inter-site dependence

structures, it is expected from the “Full” versions to adjust both the inter-variable and inter-site relationships together. In535

addition, the univariate CDF-t bias correction method has been implemented and used as a benchmark to assess the benefits

of considering multivariate aspects in the correction procedure. A wide range of metrics has been developed to compare bias

correction outputs with observations and model data, and analyze the adjustements of univariate distributions, inter-variable

correlations, inter-site correlations and temporal structure. Multi-dimensional change, i.e. non-stationary, properties have been

assessed, providing a comprehensive framework to compare the performance of the methods. The IPSL simulations have been540

corrected with respect to two distinct reference datasets, i.e. WFDEI and SAFRAN, for respectively France and Brittany to

attempt to measure the potential influence of the reference spatial resolution on MBC results.

6.2 Discussion and recommendations

General recommendations can be drawn to help practitioners in the choice of BC methods for their applications. For sake of

clarity, Table 1 provides a concise summary of the different recommendations made below. If the univariate CDF-t method545

corrects the univariate distributions well, it replicates the dependence properties of the model, i.e. inter-variable, inter-site or

temporal structures, and preserves its multi-dimensional change across time. Hence, if the multivariate properties of raw climate

simulations are not relevant, using 1d-BC methods is not appropriate to get adequate dependence properties. Concerning MBC
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methods, in general, R2D2, dOTC, MBCn and MRec algorithms showed a great ability to adjust the statistical properties

associated with the corresponding objectives of the dimensional configurations. Indeed, in addition to correcting univariate550

distributions, the 2d-, Spatial- and Full-versions of each multivariate method adjust respectively inter-variable, spatial, and

inter-variable/spatial correlations of climate simulations reasonably well. However, caution has to be taken before applying

multivariate methods and conducting analysis studies. It has been noted that, depending on the dimensional configuration,

instability of some methods can possibly affect corrected outputs, and practitioners have to make sure that no degradation

of the desired statistical features is made by the multivariate BC method. In particular, for MBCn and MRec, increasing the555

number of variables to be corrected jointly in the dimensional configuration is often accompanied by a potentially strong

deterioration of spatial properties (see orange tildes in the row “Capacity to correct spatial prop.” in Table 1). However, for

MBCn, it must be recalled that the number of iterations for the algorithm was fixed to 200 for Full-versions. Although this

choice is a good compromise between computation time and fitting the multivariate distribution in the calibration period, this

might be sub-optimal for some regions. Indeed, early stopping of the procedure could be necessary to avoid overfitting in560

high dimension, as discussed in Cannon (2018). Therefore, more research is needed to improve the global performances of

MBCn, such as early stopping, optimizing the sequence of random rotation matrices to speed up convergence, or, for spatial

downscaling problems, adding a conservation step to provide more physical constraints to the bias correction (as proposed in

Lange, 2019). Moreover, it has been shown that the characteristics of the climate data to correct can influence the results of

the MBCs. In particular, and as noted in subsection 5.3, a distinction of results between temperature and precipitation has been565

identified for the MRec method (e.g. in Figs. 1, S1, 3 and S3). This might be caused by the way the MRec method performs

the correction: only the Pearson correlation structure is adjusted, since assumed to be sufficient to correct the full multivariate

dependence structure. Although correcting only Pearson spatial correlations for temperature seems reasonable as temperature

has traditionally a multivariate Gaussian dependence structure, it appears to be not enough for precipitation, presenting more

complex spatial interactions. In that sense, to adjust non-Gaussian climate variables as precipitation, MBCs correcting the full570

multivariate dependence structure (e.g. R2D2, dOTC or MBCn) must be preferred by practitioners.

Also, the ability of the MRec method to adjust Brittany in a very high-dimensional context strongly suggests that the size of

the geographical area under study is an important feature for multivariate bias correction. Indeed, a small region like Brittany is

likely to present a homogeneous climate, or at least to be spatially second order stationary, and, consequently, strong statistical

dependencies between locations. Dimensions are then somehow redundant and spatial correlations for each physical variable575

are strong, which potentially reduces the number of “effective dimensions”, also called “spatial degrees of freedom” (e.g., in der

Megreditchian, 1990; Bretherton et al., 1999). For MRec, it results in consequently reducing the errors in the computation of

the inverse covariance matrices, and providing more adequate results. For larger regions presenting a high number of “effective

dimensions” as France, MRec is however able to provide appropriate results if enough data are provided. For illustration

purposes, the MRec method has been additionally applied on a seasonal basis instead of on a monthly one, i.e. correcting 642580

dimensions with at least 90 days × 19 years = 1710 time steps. By increasing the number of time steps used in the procedure,

high-dimensional sample covariance matrices within MRec are estimated in a more “robust” way, permitting a more suitable

correction of the simulations using Full-MRec. Results for some criteria are presented in the Supplement (Figs. S8, S9, S10,

18

https://doi.org/10.5194/esd-2020-10
Preprint. Discussion started: 6 March 2020
c© Author(s) 2020. CC BY 4.0 License.



S11 and S12) but are not commented in the present study. Also, within MRec, more robust estimators of inverse covariance

matrices could be used to obtain more appropriate corrections in a high-dimensional context (e.g., as presented in Levina et al.,585

2008). More generally, for most MBCs, for a given number of statistical dimensions (e.g., number of grid cells), as going

from a large (e.g., France) to a smaller (e.g., Brittany) area reduces the “effective dimension”, it facilitates the multivariate

corrections and therefore improves the results (e.g. compare Figs. 1, S1, 4, S4, 5 and S5). This raises the question of whether

applying MBC on climate simulations over large geographical areas is justified, i.e. if it is worth striving for the correction of

correlation structures between distant sites presenting weak statistical relationships, and, by doing so, taking the risk of losing590

global effectiveness of the BC methods.

Regarding the temporal structure, none of the presented multivariate BC methods are designed to adjust this specific statis-

tical aspect (red crosses in Table 1). Moreover, as highlighted by Vrac (2018), any multivariate BC method will necessarily

modify the rank sequence of the simulated variables. Results from the present study allow adding nuances to this statement:

modification of rank chronologies of the simulations depends on both the multivariate BC methods and the dimensional con-595

figurations. In particular, for dOTC, MBCn and MRec methods, a similar behaviour was observed: the higher the number

of dimensions to correct, the stronger the deterioration of rank chronology of the simulations. However, concerning R2D2,

depending on the dimensional version, the rank chronology of the model can be reproduced for the specific area around the

location of the reference dimension, which could (or not) be desired by practitioners depending on the performance of the

simulations.600

Finally, we shed light on the non-stationary properties of the multivariate BC methods. While dOTC, MBCn and MRec

are designed to transfer some of the multi-dimensional properties evolution (i.e., change in time) from the model to the bias-

corrected data, R2D2 assumes the inter-variable and inter-site rank correlations – or copula functions – to be stable in time.

Although, in a general way, copula non-stationarity for future periods can be reasonably expected (e.g. as documented for

rainfall spatial distributions in Wasko et al., 2016), it can be argued on the contrary that inter-variable and spatial dependence605

structures are stable over time for specific regions because of physical constraints (Vrac, 2018). The differences of Wasserstein

distances between the France and the Brittany region for the reference in Fig. 7a and 7b illustrate well that copula stationarity

(or non-stationarity) is not straightforward depending on the geographical domain. The question of the evolution of the copula

(i.e., the rank dependence structure) is, therefore, still an open question and needs to be answered on a case by case basis. In

practice, performances of the methods concerning the multi-dimensional changes of the different BC outputs are hard to assess610

precisely, as the potential instability (as in MBCn and MRec) or the stochasticity (as in MBCn) of the methods could affect the

quality of the results, making difficult the identification of changes. Moreover, the adjustment of univariate distributions has a

non-negligible effect on changes of inter-variable and spatial rank dependences for MBCs assuming non-copula stationarity: in

fact, rather than reproducing simulated changes in the correction procedure, these methods are more likely to provide changes

in agreement with the ones provided by 1d-BC (e.g. as seen for Brittany in Fig. 6b). Then, in the case where the adjustement615

of univariate distributions does not modify (too much) the simulated changes of inter-variable and spatial rank dependences,

MBCs assuming non-stationary copula would be more likely to present changes in line with those from the model. This result

is further confirmed by the results obtained for summer and displayed in Fig. S6 for inter-variable rank dependence changes.
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The non-stationary property also partly explains the possible differences of results obtained during evaluation (i.e., protocol 1,

see Sect. 5) for each criterion. Indeed, as noted in Robin et al. (2019), if the multivariate properties changes provided by the620

model simulations are incorrect, those of the corrections from methods assuming non-stationarity can be, retrospectively, in

disagreement with the changes of the observations.

Therefore, before choosing any multivariate BC method, practitioners have to ask themselves some questions, e.g.: What are

the important statistical properties I want my corrections to provide? Can the evolution of the copula (i.e., rank dependence) in

the simulations between calibration and projection be considered as relevant? And should it be reproduced in the correction?625

If so, according to the results obtained in the present study, dOTC and MRec are good candidates among the presented MBCs.

Using these methods, the corrections will be likely to present change in rank dependence similar to the simulations, or at least

of same sign. It could also be recommended to use these methods if practitioners do not have any idea if the rank dependence

changes in the simulations could be considered relevant or not, advocating to let the model express its own dynamic in the

absence of relevant judgements. However, if it is assumed that the change in the simulations, in spite of all efforts exerted630

by climate modellers, is not considered as relevant, R2D2 is a good candidate, as it is better to have stationarity of multi-

dimensional rank properties in the correction rather than a non-relevant or wrong one. Moreover, R2D2 is also a good candidate

for practitioners who do not expect any rank dependence change. The obtained BC outputs from R2D2 will not have any change

of inter-variable or inter-site rank dependence structures, because assumed to be imposed by physical constraints, and hence

stable in time. Concerning MBCn, the global instability of the method in high-dimensional settings, added to the inherent635

variability due to its stochastic nature affect significantly the quality of the correction. In practice, therefore, it makes difficult

the appropriate preservation of the simulated changes, although the method is specifically designed for that.

6.3 Future work

This intercomparison has been designed such that new BC methods can be easily added. As a result, adding new methods

relying on different assumptions, correcting different statistical aspects or using other statistical techniques, is reasonably640

feasible. Moreover, as mentioned in the introduction section, bias adjusted simulations are particularly valuable for impact

studies. Therefore, evaluating how the quality of multivariate bias-corrected data influences the results of complex impact

models is an important perspective, since providing such an analysis will be useful for the scientific community working

on climate change impacts, e.g., in hydrology, agronomy or ecology. In an attempt to answer this question, an appropriate

future step could be to apply the presented multivariate BC methods in different dimensional configurations to various GCM645

simulations – and not only one as in this study – in order to provide an ensemble of multivariate BC simulations. The obtained

datasets would also be useful to carry out scientific studies on other aspects of climate change, such as climate change attribution

studies aimed to identify which mechanisms are responsible for changes in the Earth’s climate (e.g., Stott et al., 2016; Yiou

et al., 2017; Ribes et al., 2019). Indeed, most of these studies use plain simulations, and consequently do not take into account

their statistical biases. Conducting attribution studies using plain and bias-corrected simulations will permit to increase the650

understanding of the influence of these biases on results, which is essential to provide valuable information to the society

concerning the ongoing climate change.
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In the present study, it has been highlighted that none of the presented multivariate BC methods were designed to correct

or preserve the temporal properties of the simulations. Nevertheless, a few studies have attempted to develop BC methods

providing adjustments of some temporal properties of climate variables in addition to the correction of inter-site or inter-655

variable properties (Mehrotra and Sharma, 2015, 2016, 2019). However, considering adjustments for temporal properties will

necessarily modify, even slightly, univariate distributions, inter-site and/or inter-variable properties. From a more philosophical

perspective, striving for the development of MBCs correcting a wide range of statistical features raises also the question of what

has been preserved from the simulations in the final BC outputs. By improving the agreement of simulations with observations,

this may have the effect of lowering (misleadingly) the uncertainty of the simulated statistical attributes, often without sound660

physical justifications (Ehret et al., 2012), which puts into question the validity of such methods. Multivariate BC methods

developed in the future should, therefore, take into account these issues, in attempting to find a reasonable balance between,

on the one hand, the correction of inter-site and inter-variable dependences and, on the other hand, the correction or modifi-

cation of temporal properties, while being able to preserve meaningful simulated characteristics for future periods. To do so,

developing new MBC methods including some physical processes to drive the correction procedure is a consistent perspective665

of development to obtain more realistic bias corrected simulations. The new developed MBCs could be then included in this

intercomparison study, to evaluate and compare their performances with the existing multivariate BC methods.

Appendix A: Details on the CDF-t method

BC methods are applied to correct a simulated fields of S grid cells, each of them described by V physical variables. The

total number of statistical dimensions to correct is hence equal to D = V ×S, with each of the dimension composed of N670

time steps. Let XA being a matrix of dimension N ×D and Xd
A(t) the value of the physical variable corresponding to the

d-th dimension at time t from the matrix XA. Datasets, i.e. matrices, to correct with BC methods are model outputs during

the calibration (denoted XMC
) and the projection period (denoted XMP

), according to the data from the reference observed

during calibration (denoted XRC
). Corrected outputs for the calibration and the projection period are denoted X̂MC

and X̂MP

respectively.675

CDF-t is a version of quantile-quantile method that takes into account, by defining a transfer function T , the potential

evolution of univariate CDFs from the calibration to the projection period. Let assume for this subsection F dMC
and F dRC

defining the univariate CDFs of the d-th dimension Xd
MC

and Xd
RC

located at the same grid cell for both the model and the

reference in the calibration period. To simplify the notation, we will denote these CDFs FMC
and FRC

respectively. The

transfer function T is defined such that it links the two CDFs FMC
and FRC

as following:680

T
(
FMC

(x)
)

= FRC
(x). (A1)

A more simple formulation of T is then obtained by replacing x by F−1
MC

(u), with u probabilities in [0,1].

T
(
u
)

= FRC

(
F−1
MC

(u)
)
. (A2)
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By assuming time-stationarity of the transformation T , it can be applied similarly in the projection period to link CDFs between

the model and the reference:685

T
(
FMP

(x)
)

= FRP
(x). (A3)

By combining Eq. (A2) and Eq. (A3), we then can generate FRP
, the estimated CDF of the climate variable in the reference

during the projection period:

FRP
(x) = FRC

(
F−1
MC

(FMP
(x))

)
. (A4)

Once FRP
has been estimated, a simple quantile-quantile method is performed between FRP

and FMP
to derive the bias690

corrected time series X̂d
MP

for the projection period. By proceeding this way, CDF-t takes into account in its procedure the

potential evolution of CDFs of the model between the calibration and projection period to adjust the projection period. It differs

from QQ method that defines for both periods the same transfer function using only FMC
and FRC

. Concerning the correction

of the calibration period, i.e. to derive X̂d
MC

, the CDF-t method is equivalent to the QQ method. CDF-t is applied independently

for each of the D statistical dimensions and for both calibration and projection period to derive the final bias corrected outputs695

X̂MC
and X̂MP

.

Appendix B: Details on the R2D2 method

The R2D2 method, belonging to the “marginal/dependence” category, consists in several successive steps that are similar to

adjust climate simulations for calibration and projection periods. Hence, to avoid redundancy, the correction procedure for the

projection period will only be explained in this subsection. In this appendix, temporary corrected outputs for the projection700

period are denoted X̃MP
.

– First, an univariate BC method is performed for the projection period to obtain the N ×D matrix output X̃MP
. As a

reminder, X̃MP
=
[(
X̃1
MP

(1), . . . , X̃1
MP

(N)
)′
, . . . ,

(
X̃D
MP

(1), . . . , X̃D
MP

(N)
)′]

;

– For each of the dimension d, R2D2 computes the ranks of the time series within the univariate BC outputs X̃MP
. For ex-

ample, for the dimension d, theN×1 vector
(

rank
(
X̃d
MP

(1)
)
, . . . , rank

(
X̃d
MP

(N)
))′

, denoted
(
r̃dMP

(1), . . . , r̃dMP
(N)

)′
,705

is computed. It results in getting, for each time step t, a D-dimensional vector R̃MP
(t) =

(
r̃1MP

(t), . . . , r̃DMP
(t)
)

which

provides the multivariate rank structure of X̃MP
at t.

– For each of the dimension d, R2D2 computes the ranks of the time series within the reference dataset during cali-

bration XRC
. For example, for the dimension d, the N × 1 vector

(
rank

(
Xd
RC

(1)
)
, . . . , rank

(
Xd
RC

(N)
))′

, denoted
(
rdRC

(1), . . . , rdRC
(N)

)′
, is computed. It results in getting, for each time step t, a D-dimensional vector RRC

(t) =710
(
r1RC

(t), . . . , rDRC
(t)
)

which provides the multivariate rank structure of XRC
at t.
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– A “reference” dimension d needs to be selected by the users in X̃MP
. The corresponding univariate time series will be

kept untouched in the final R2D2 outputs as the correction of the multivariate dependence structure is articulated on this

dimension “pivot”. For each time step t:

– the algorithm R2D2 finds t∗ such that r̃dMP
(t) = rdRC

(t∗). From t∗, R2D2 deduces the multivariate rank structure715

of the reference during the calibration period at this specific time step: RRC
(t∗) =

(
r1RC

(t∗), . . . , rDRC
(t∗)

)
;

– R2D2 forces the D-dimensional vector of ranks of its final outputs X̂MP
to be equal to:

R̂MP
(t) =

(
r1RC

(t∗), . . . , r̃dMP
(t), . . . , rDRC

(t∗)
)

.

To do so, the algorithm looks for shuffling the values in each of the dimensions k 6= d of X̃MP
, such that its rank

structure at time t matches R̂MP
(t). In a more explicit way, for all k 6= d, R2D2 finds the time steps tk such that720

rkRC
(t∗) = r̃kMP

(tk). The value in X̃k
MP

to shuffle associated with the rank r̃kMP
(tk) is then derived, and copied in

the final outputs X̂k
MP

(t).

– By repeating the step 4 until each dimension has been used one time as a “reference” for the shuffling, R2D2 is able to

derive a collection ofD MBC outputs, with exactly the same multivariate dependence structure but differing on temporal

properties, describing the possible variability in the different rank structures.725

Appendix C: Details on the dOTC method

dOTC method, belonging to the “all-in-one” category, relies on optimal transport theory to adjust climate simulations. A slight

different mathematical notation needs to be used here to explain dOTC. Let define XRC
(t) the realizations of XRC

at each

time step t across each of the D dimensions. The collection of the variables
(
XRC

(1), . . . ,XRC
(N)

)
forms a D×N matrix,

and describes XRC
in a different way. Similarly,

(
XMC

(1), . . . ,XMC
(N)

)
and

(
XMP

(1), . . . ,XMP
(N)

)
are considered for,730

respectively, XMC
and XMP

. In the following, ci denotes a collection of multivariate cells that partition regularly RD and

fully cover
(
XMC

(1), . . . ,XMC
(N)

)
and

(
XMP

(1), . . . ,XMP
(N)

)
. To simplify notations, the center of a grid cell ci is also

denoted ci. Hereinafter is presented first how dOTC adjusts the calibration period of climate simulations to derive X̂MC
. Then,

the algorithm procedure will be detailed for the adjustment of the projection period X̂MP
.

The “OTC” procedure for the calibration period:735

– First, the algorithm estimates P̃XRC
and P̃XMC

the empirical multivariate distributions of XRC
and XMC

. To do so,

dOTC computes a sum of Dirac masses. For example, for XMC
, we have:

P̃XMC
(A) =

I∑

i=1

pXMC ,i
δci

(A),

where pXMC ,i
= 1

N

N∑
t=1

1(XMC
(t) ∈ ci), and A⊂ RD.
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– Then, the coefficients γij defining the estimator γ̃ of the optimal plan that moves the bin ci of P̃XMC
to the bin cj of740

P̃XRC
are computed. For A,B ⊂ RD, γ̃ is defined as follows:

γ̃(A×B) =
I,J∑

i,j=1

γijδ(ci,cj)(A×B),

The coefficient γij corresponds to the joint probability of XMC
being in ci and XRC

being in cj , which is part of the

MBC process. They have to respect the following constraints:

J∑

j=1

γij = pXMC ,i
,745

I∑

i=1

γij = pXRC ,j
,

and have to minimize the following cost function C̃:

C̃(γ̃) =
I,J∑

i,j=1

‖ci− cj‖2γij .

To find these coefficients that form the so-called optimal transport plan, the algorithm resolves the linear programming

problem by using the procedure developed by Flamary and Courty (2017).750

– Then, for each time step t:

– the algorithm finds the cell ci containing XMC
(t)

– Using the plan γij , it constructs the conditional probability vector γ̃XMC
(t) =

(
γi,1, . . . ,γi,J

)
/pXMC

,i

– According to the probability vector γ̃, the algorithm draws a j∗ ∈ 1, . . . ,J

– The correction X̂MC
(t) is then derived with an uniform draw in cj∗755

– After iterating for each t, the final outputs for the calibration period X̂MC
is obtained.

The “dOTC” procedure for the projection period

– As explained before, dOTC estimates P̃XRC
, P̃XMC

and P̃XMP
the empirical multivariate distributions of XRC

, XMC

and XMP
.
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– Then, the coefficients γij defining the estimator γ̃ of the optimal plan that moves the bin ci of P̃XMC
to the bin cj of760

P̃XRC
are computed.

– Similarly, the coefficients ϕik defining the estimator ϕ̃ of the optimal plan that moves the bin ci of P̃XMC
to the bin ck

of P̃XMP
are computed.

– By default, the diagonal matrix of the standard deviations D is computed: D = diag(σXMC
σ−1
XRC

). Others alternatives

for the computation of D are possible and detailed in Robin et al. (2019).765

– Then, for each time step t:

– the algorithm finds the cell cj containing XRC
(t),

– Using the plan γij , it finds the cell ci of P̃XMC
associated with cj

– Using the plan ϕik, it finds the cell ck of P̃XMP
associated with ci

– Using D, it computes the vector vik := ck − ci for scaling adjustment of the correction770

– A preliminary (and temporary) correction of the model during the projection X̌MP
(t) is then obtained: X̌MP

(t) =

XMC
(t) + D.vik

– Then, it estimates P̌X̌MP
the empirical multivariate distribution of X̌MP

.

– Finally, the OTC procedure (see above for calibration period) is applied between
(
XMP

(1), . . . ,XMP
(N)

)
and

(
X̌MP

(1), . . . ,X̌MP
(N)

)
to produce the final outputs

(
X̂MP

(1), . . . ,X̂MP
(N)

)
.775

Appendix D: Details on the MBCn method

The MBCn method can be summarized in 3 steps in the way it corrects climate simulations. As a reminder, MBCn belongs to

the “marginal/dependence” category, i.e. correcting separately marginal distributions and full dependence structure of climate

simulations. In this appendix, temporary corrected outputs of a matrix XA are denoted with tilde accents (X̃A) or inverted hats

(X̌A).780

– First, marginal distributions are corrected with an univariate BC method. To do so, MBCn uses the Quantile Delta

Mapping (QDM from Cannon et al., 2015) algorithm defined as follows:




X̃d
MC

(t) = F−1
RC

(
FMC

(
Xd
MC

(t)
))

∆t =Xd
MP

(t)−F−1
MC

(
FMP

(
Xd
MP

(t)
))

X̃d
MP

(t) = F−1
RC

(
FMP

(
Xd
MP

(t)
))

+ ∆t

(D1)
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This transfer function preserves absolute changes in quantiles and has to be applied for interval variables such as temper-

ature. For ratio variables like precipitation, the addition/substraction operators in the transfer function has to be replaced785

by multiplication/division operators to define a function that preserves relative changes in quantiles. For both calibra-

tion and projection period, the D physical variables are independently adjusted by applying the corresponding transfer

function. The resulting matrices X̃MC
and X̃MP

with adjusted marginal distributions are stored by the algorithm in

respectively X̃init
MC

and X̃init
MP

before the second step, as it re-uses them in the third one.

– Within the MBCn algorithm, the multivariate dependence structure of the simulations is adjusted through an iterative790

procedure. At each iteration j, an application of a D×D random orthogonal rotation matrix R[j] (Mezzadri, 2007) is

performed on the datasets XRC
, X̃MC

and X̃MP
obtained from Step 1:





X̌[j]
RC

= X[j]
RC

R[j]

X̌[j]
MC

= X̃[j]
MC

R[j]

X̌[j]
MP

= X̃[j]
MP

R[j]

(D2)

It permits to provide linear combinations of the original variables. The QDM transfer function defined in Eq. (D1) for

interval variables, i.e. with addition/substraction operators, is then applied on each of the rotated marginal distributions795

of X̌
[j]
MC

and X̌
[j]
MP

, considering the corresponding rotated marginal distributions in X̌
[j]
RC

as the reference. Once marginal

distributions have been adjusted in X̌
[j]
MC

and X̌
[j]
MP

, matrices are rotated back to the physical variables ranges:





X[j+1]
RC

= X[j]
RC

X̃[j+1]
MC

= X̌[j]
MC

R[j]−1

X̃[j+1]
MP

= X̌[j]
MP

R[j]−1

(D3)

These successive steps are applied iteratively until the multivariate distribution of the corrected simulations X̃[j+1]
MC

matches the one of the reference XRC
.800

– Once the full dependence structure of simulated variables converged to the one of the reference after, let say, the j∗-th

iteration, MBCn replaces quantiles of each of the variables in X̃[j∗+1]
MC

and X̃[j∗+1]
MP

obtained at the end of Step 2) with

those from X̃init
MC

and X̃init
MP

obtained during Step 1). This additional step preserves from the possible deterioration of

the model trend during the correction of the multivariate dependence structure in Step 2). Simulations with corrected

marginal distributions features and full dependence structure X̂MC
and X̂MP

are then obtained.805

Appendix E: Details on the MRec method

The MRec method, belonging to the “all-in-one” category, consists in the following steps.
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– First, each of the D dimensions in XRC
is transformed independently in the Gauss domain. However, the transformation

differs between interval variables, i.e. temperature, and ratio variables, i.e. precipitation, and is performed as follows:

– For a dimension d being an interval variable, a distribution F dRC
is fitted:810

F dRC
(x) = P

(
Xd
RC

(t)< x
)
.

Then, the corresponding vector W d is computed as following:

W d(t) = Φ−1
(
F dRC

(
Xd
RC

(t)
))
,

with Φ the distribution function of the standard normal distribution N (0,1).

– For a dimension k being a ratio variable, a distribution F kRC
is fitted:815

F kRC
(x) = P

(
Xk
RC

(t)< x|Xk
RC

(t)> 0
)
.

Additionally, the frequency Pk0 of null events in Xk
RC

is computed:

Pk0 = P
(
Xk
RC

(t) = 0
)
.

Then, the corresponding vector W k is computed as following:

W k(t) =





Φ−1
(
F kRC

(
Xk
RC

(t)
)
(1−Pk0) +Pk0

)

Φ−1
(
Pk0
2

)
.

820

Doing this step for each dimension permits to derive the matrix W of dimension N ×D, composed of the Gaussian

transformed vectors W 1, . . . , WD.

Following the notation in Bárdossy and Pegram (2012), the same procedure is repeated for XMC
and XMP

to derive

respectively the Gaussian transformed data Y and Y
′
.

– For both Gaussian transformed data W and Y, theN×N Pearson cross correlation matrices CW and CY are computed.825

– A Singular Value Decomposition (SVD) is applied on CW such that:

CW = AWDWBT
W ,

with AW and BW having same dimensions as CW , and DW a diagonal matrix of singular values. From this decompo-

sition, the square root matrix of CW , denoted SW , can be obtained as followed:

SW = AWD1/2
W AT

W .830
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– Similarly, a Singular Value Decomposition (SVD) is applied on CY such that:

CY = AY DY BT
Y .

From this decomposition, its inverse square root matrix TY can be obtained as following:

TY = AY D−1/2
Y AT

Y .

– Y is decorrelated to Q: Q = YTY .835

– Q is then recorrelated to V: V = QSW . V is hence the recorrelated transformed model data for the calibration period

presenting the same correlation structure as W.

– For the projection period, V
′

is computed directly without decorrelation step: V
′
= Y

′
TY SW .

– V and V
′

are then transformed back to physical variables using univariate quantile-quantile method for each dimension

d, with Xd
RC

being the target for the correction. The desired adjusted matrices X̂MC
and X̂MP

are then finally obtained.840

28

https://doi.org/10.5194/esd-2020-10
Preprint. Discussion started: 6 March 2020
c© Author(s) 2020. CC BY 4.0 License.



Code and data availability. The R package for MBCn is available on https://CRAN.R-project.org/package=MBC. R2D2 is not publicly

available yet but only on demand to M. Vrac. dOTC and MRec are publicly available on https://github.com/yrobink/SBCK.
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Table 1. Summary of recommendations for the multivariate BC methods to use with respect to the different assumptions made by practitioners

or end-users. Green checks and red crosses indicate whether BC methods are recommended for use or not, depending on the statement in

rows. Orange tildes indicate when particular caution has to be taken.

Characteristics CDF-t R2D2 dOTC MBCn MRec

Correction of univariate distrib. prop. 3 3 3 3 3

Modification of the correlations of the model 7 3 3 3 3

Capacity to correct inter-var. prop. 7 3 3 3 3

Capacity to correct spatial prop. 7 3 3 ∼ ∼

Capacity to correct temporal prop. 7 7 7 7 7

Preserve the rank structure of the model 3 ∼ ∼ ∼ ∼

Capacity to correct small geographical area n.a. 3 3 3 3

Capacity to correct large geographical area n.a. ∼ ∼ ∼ 7

Allow for evolution of the rank dependence 3 7 3 ∼ 3
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Figure 1. Boxplots of mean (a and b) and standard deviation (c and d) differences for Temperature (T2, a and c) and Precipitation (PR,

b and d) during winter over the 1979-2016 period for France (WFDEI reference). Results are shown for: plain IPSL; CDF-t; R2D2; dOTC

(2d-, Spatial- and Full-versions); MBC-n and MRec (2d-, Spatial- and Full-versions) outputs. Red asterisks indicate values lying outside the

plotted range.

35

https://doi.org/10.5194/esd-2020-10
Preprint. Discussion started: 6 March 2020
c© Author(s) 2020. CC BY 4.0 License.



4
2

4
6

5
0

−0.25
−0.05
 0.15
 0.35
 0.55

L
a

ti
tu

d
e

(a1) Reference (b1) Model (c1) CDF−t

4
2

4
6

5
0

(d1) 2d−R2D2

L
a

ti
tu

d
e

(e1) Spatial−R2D2 (f1) Full−R2D2

4
2

4
6

5
0

(g1) 2d−dOTC

L
a

ti
tu

d
e

(h1) Spatial−dOTC (i1) Full−dOTC

4
2

4
6

5
0

(j1) 2d−MBCn

L
a

ti
tu

d
e

(k1) Spatial−MBCn (l1) Full−MBCn

−5 0 5 10

4
2

4
6

5
0

(m1) 2d−MRec

L
a

ti
tu

d
e

Longitude
−5 0 5 10

(n1) Spatial−MRec

Longitude
−5 0 5 10

(o1) Full−MRec

Longitude

4
7

.5
4

8
.5

0.16
0.24
0.33
0.41
0.50

L
a

ti
tu

d
e

(a2) Reference (b2) Model (c2) CDF−t

4
7

.5
4

8
.5

(d2) 2d−R2D2

L
a

ti
tu

d
e

(e2) Spatial−R2D2 (f2) Full−R2D2

4
7

.5
4

8
.5

(g2) 2d−dOTC

L
a

ti
tu

d
e

(h2) Spatial−dOTC (i2) Full−dOTC

4
7

.5
4

8
.5

(j2) 2d−MBCn

L
a

ti
tu

d
e

(k2) Spatial−MBCn (l2) Full−MBCn

−5.0 −4.0 −3.0

4
7

.5
4

8
.5

(m2) 2d−MRec

L
a

ti
tu

d
e

Longitude
−5.0 −4.0 −3.0

(n2) Spatial−MRec

Longitude
−5.0 −4.0 −3.0

(o2) Full−MRec

Longitude

Figure 2. Maps of temperature vs. precipitation Spearman correlation computed at each grid cell for BC methods using WFDEI reference

(a1-o1) and SAFRAN reference (a2-o2) during winter over the 1979-2016 period. Results are shown for: Reference; plain IPSL; CDF-t;

R2D2; dOTC; MBC-n and MRec outputs for respectively 2d-, Spatial- and Full- versions. Note that the color scales between (a1-o1) and

(a2-o2) are not the same to better emphasize intensities of values in the two regions.
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Figure 3. Correlograms for precipitation using WFDEI reference for France (a1-e1) and SAFRAN reference for Brittany (a2-e2) during

winter over the 1979-2016 period. Results are shown for Reference (circles) and plain IPSL (black line). Results are displayed for: CDF-t;

R2D2; dOTC; MBC-n and MRec outputs for respectively 2d- (dotted), Spatial- (dashed) and Full-versions (solid lines).
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Figure 4. Order 1 Pearson autocorrelation for temperature using WFDEI reference (a1-o1) and SAFRAN reference (a2-o2) during winter

over the 1979-2016 period. Results are shown for: Reference, plain IPSL, CDF-t, R2D2, dOTC, MBC-n and MRec outputs for 2d-, Spatial-

and Full-versions. Note that the color scales between (a1-o1) and (a2-o2) are not the same to better emphasize intensities of values of the

two regions.
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Figure 5. Boxplots of rank correlations computed at each grid cell between the bias corrected and the raw climate model time series, for

temperature, using WFDEI for France (a) and SAFRAN for Brittany (b) region during winter over the 1979-2016 period. Results are shown

for: CDF-t, R2D2, dOTC, MBC-n and MRec outputs for 2d-, Spatial- and Full-versions.

39

https://doi.org/10.5194/esd-2020-10
Preprint. Discussion started: 6 March 2020
c© Author(s) 2020. CC BY 4.0 License.



4
2

4
6

5
0

−0.21
−0.11
 0.00
 0.11
 0.21

L
a

ti
tu

d
e

(a1) Reference (b1) Model (c1) CDF−t

4
2

4
6

5
0

(d1) 2d−R2D2

L
a

ti
tu

d
e

(e1) Spatial−R2D2 (f1) Full−R2D2

4
2

4
6

5
0

(g1) 2d−dOTC

L
a

ti
tu

d
e

(h1) Spatial−dOTC (i1) Full−dOTC

4
2

4
6

5
0

(j1) 2d−MBCn

L
a

ti
tu

d
e

(k1) Spatial−MBCn (l1) Full−MBCn

−5 0 5 10

4
2

4
6

5
0

(m1) 2d−MRec

L
a

ti
tu

d
e

Longitude
−5 0 5 10

(n1) Spatial−MRec

Longitude
−5 0 5 10

(o1) Full−MRec

Longitude

4
7

.5
4

8
.5

−0.08
−0.04
 0.00
 0.04
 0.08

L
a

ti
tu

d
e

(a2) Reference (b2) Model (c2) CDF−t

4
7

.5
4

8
.5

(d2) 2d−R2D2

L
a

ti
tu

d
e

(e2) Spatial−R2D2 (f2) Full−R2D2

4
7

.5
4

8
.5

(g2) 2d−dOTC

L
a

ti
tu

d
e

(h2) Spatial−dOTC (i2) Full−dOTC
4

7
.5

4
8

.5

(j2) 2d−MBCn

L
a

ti
tu

d
e

(k2) Spatial−MBCn (l2) Full−MBCn

−5.0 −4.0 −3.0

4
7

.5
4

8
.5

(m2) 2d−MRec

L
a

ti
tu

d
e

Longitude
−5.0 −4.0 −3.0

(n2) Spatial−MRec

Longitude
−5.0 −4.0 −3.0

(o2) Full−MRec

Longitude

Figure 6. Differences of temperature vs. precipitation Spearman correlations computed at each grid cell between the 1979-1997 and 1998-

2016 periods during winter. WFDEI (a1-o1) and SAFRAN (a2-o2) data are used as references for the bias correction. Note that the color

scales between (a1-o1) and (a2-o2) are not the same to better emphasize intensities of values of the two regions.
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Figure 7. Values of the three Wasserstein distances on ranks between 1979-1997 and 1998-2016 periods during winter for temperature

(square), precipitation (circle) and both temperature and precipitation (triangle) for the region of France (a) and Brittany (b). Results are

presented for the reference, plain IPSL (lines); CDF-t and the different MBCs. 2d-R2D2-T2 (resp. 2d-R2D2-PR) indicates results for 2d-

R2D2 with temperature (resp. precipitation) used as reference dimension. Black asterisks indicate values lying outside the plotted range.
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